Materials Science Center Report No. 1029, 1969 (unpublished).

³⁵G. V. Chester (private communication).

 36 A. Lakatos and H. S. Sack, Solid State Commun. $\underline{4}$, 315 (1966).

 37 P. Clayman, I. G. Nolt, and A. J. Sievers, Solid State Commun. $\frac{7}{2}$, 7 (1969).

³⁸H. F. Macdonald, M. V. Klein, and T. P. Martin, Phys. Rev. 177, 1292 (1969).

³⁹W. D. Wilson, R. D. Hatcher, G. J. Dienes, and R. Smoluchowski, Phys. Rev. <u>161</u>, 888 (1967).

⁴⁰A. F. Devonshire, Proc. Roy. Soc. (London) <u>A153</u>, 601 (1936).

⁴¹E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, *Molecular Vibrations* (McGraw-Hill, New York, 1955), Chap. 7.

⁴²T. L. Estle, B. Dischler, and R. W. Timme, Bull. Am. Phys. Soc. 14, 346 (1969).

⁴³M. Gomez, Ph.D. thesis, Cornell University, Materials Science Center Report No. 910, 1968 (unpublished).

⁴⁴G. Benedek (unpublished).

⁴⁵W. Dreybrodt and K. Fussgaenger, Phys. Status Solidi <u>18</u>, 133 (1966).

⁴⁶Dr. B. Wedding and Professor M. V. Klein kindly gave us several OH⁻- and OD⁻-doped NaCl crystals which had been analyzed for OH⁻ concentration.

⁴⁷R. Rosenbaum and M. V. Klein, Phys. Rev. (to be published).

⁴⁸W. R. Fenner, Ph. D. thesis, University of Illinois, 1969 (unpublished).

⁴⁹Dr. D. R. Bosomworth supplied the NaCl sample doped with 1500-ppm OH⁻.

⁵⁰Harshaw Chemical Company, Cleveland, Ohio.

⁵¹Dr. R. K. Skogerboe and the Materials Science Center Analytical Facility analyzed the samples for impurity concentration using flame-emission techniques.

⁵²P. Sauer, Z. Physik <u>194</u>, 360 (1966).

 $^{53}\mathrm{C}$. K. Chau, M. V. Klein, and B. Wedding, Phys. Rev. Letters 17, 521 (1966).

⁵⁴H. B. Shore, Phys. Rev. Letters <u>17</u>, 1142 (1966).

⁵⁵M. E. Baur and W. R. Salzman, Phys. Rev. <u>151</u>, 710 (1966).

⁵⁶R. S. Scott and W. H. Flygare, Phys. Rev. <u>182</u>, 445 (1969).

⁵⁷A. M. Stoneham, Proc. Roy. Soc. (London) <u>89</u>, 909 (1966).

PHYSICAL REVIEW B

VOLUME 2, NUMBER 2

15 JULY 1970

Formation of F_2^+ Centers in KI^{\dagger}

Alexander Kouvalis

Zenith Radio Corporation, Chicago, Illinois 60639 (Received 26 January 1970)

When undoped KI is x rayed at 130 °K and then irradiated with F light at 240 or 270 °K, the M and R centers are formed. Subsequent irradiation at 78 °K with M_L light results in the formation of an optical-absorption band at 1650 nm at the expense of the M band. Studies suggest that it is associated with F_2^* centers (formerly called M^*), which are formed at 78 °K by (i) $V+F_2+(M_L \text{ light}) \rightarrow V^-+F_2^*$ (where $M_L \text{ light}$ represents light absorbed by the $M_L \text{ bands}$) and destroyed by x rays at 78 °K, by (ii) $V^-+F_2^*+(x \text{ rays}) \rightarrow V+F_2$ [where V^- is an electron center containing a halogen (V) center core]. F_2^* centers may also be destroyed at 78 °K by F light, by (iii) $V^-+F_2^*+F+h\nu_F \rightarrow V^-+F_2+\alpha$. Studies show that the F_2^* center is not formed optically as a result of V_R excitation, but only by direct ionization. The formation of F_2^* centers by M_L -light irradiation in x-rayed colored crystals seems to depend on the existence of V centers which act as special electron traps.

I. INTRODUCTION

It is well known that F-band irradiation of alkali halides near room temperature results in the formation of M, R, and N bands. The M, R, and N bands are called F-aggregate centers and are formed on the longer wavelength side of the F band. The various F-aggregate centers so far mentioned are electrically neutral clusters of anion vacancies and trapped electrons. If additional electrons are trapped (by F-aggregate centers), one would have F_2' , F_3' , and F_4' centers (where the prime denotes an additional electron) having an

effective negative charge. ² On the other hand, if electrons are removed from F-aggregate centers, one would have F_2^\star , F_3^\star , and F_4^\star centers having effective positive charge. With either positively or negatively charged F-aggregate centers, one must have complementary centers of opposite charge in the crystal. Recently, a number of studies have been reported on absorption bands associated with ionized F-aggregate centers (F_2^\star and F_3^\star) in several alkali halides. ³⁻⁸

The present work deals specifically with the observations of F_2^* centers in KI and with the mechanism of formation and destruction of F_2^* centers.

The mechanism of formation and destruction of F_3^* centers in KI has been previously reported.

II. EXPERIMENTAL PROCEDURE

The specimens of KI were cleaved from single large crystals obtained from the Harshaw Chemical Co. The optical-absorption measurements were made using a Cary Model 14R spectrophotometer in a previously described optical cell.

The x rays were generated from a General Electric x-ray machine, No. OX-140 tube with a tungsten anode, operated at 125-kV peak, 4.5 mA, and 120 cps.

Undoped KI was x irradiated at 130°K, where the efficiency of coloration is maximum. 11

In order to produce F-aggregate centers, the colored crystals containing F and V centers were optically irradiated in the F band with F light at several higher temperatures (240 or 270 °K). The F light was obtained by using a projection tungsten lamp and an interference 666-nm filter from Optics Technology, Inc. The so-called M_L light ¹² was obtained by using a xenon-mercury high-pressure lamp Hanovia 510-B type and an interference filter (peak transmission at 405 nm, band pass 20 nm). The F-aggregate light was obtained by using a projection tungsten lamp and a Corning No. 7-56 glass filter.

III. RESULTS

A. Optical Formation F_2^+ Centers by M_L Light Irradiation at 78 $^{\circ}$ K

The crystal was first pretreated to contain mostly F_2 and some F_3 centers as shown in Curve 1 of Fig. 1. The crystal was then bleached with F-aggregate light at 78 $^{\circ}$ K (Curve 2, Fig. 1) to form

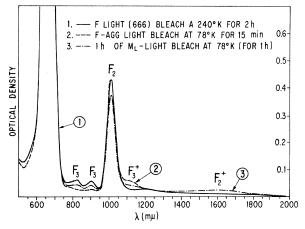


FIG. 1. Formation of F-aggregate centers at 240 °K in undoped KI by F light irradiation (Curve 1). Transformation of $F_3 \rightarrow F_3^*$ at 78 °K by F' light irradiation (Curve 2). Transformation $F_2 \rightarrow F_2^*$ at 78 °K by M_L light irradiation (Curve 3).

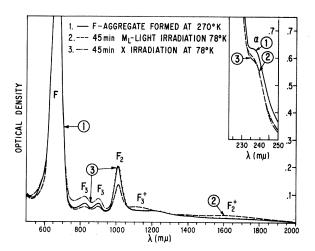


FIG. 2. Formation of F-aggregate centers at 270 °K in undoped KI by F light irradiation (Curve 1). Transformation of $F_2 \rightarrow F_2^*$ and $F_3 \rightarrow F_3^*$ at 78 °K by M_L light irradiation (Curve 2). Conversion of $F_2^* \rightarrow F_2$ and $F_3^* \rightarrow F_3$ at 78 °K by x irradiation (Curve 3).

 F_3^\star centers, 9 but no F_2^\star centers were formed. Using the broad-banded infrared radiation to produce F_3^\star centers (1125-nm band) serves the additional purpose of bleaching any photoionizable centers such as F_2' and F_3' which might conceivably 2 be formed as a result of electron trapping by the F-aggregate centers. The same results were obtained by using R_2 light rather than F-aggregate light. 9 (The R_2 light was obtained by using a projection tungsten lamp and an infrared interference 900-nm filter with a band pass of 25 nm from Optics Technology, Inc.)

Curve 3 of Fig. 1 shows the results of the formation of a new broad optical-absorption band at 1650 nm at the expense of the F_2 band by irradiating the crystal with M_L light for one hour at 78 $^{\circ}$ K. Note that some F_3 centers were reconverted to F_3 centers as a result of M_L light irradiation.

In a new set of experiments (using a fresh crystal) the relative concentration of F-aggregate centers formation (Curve 1 of Fig. 2) were purposely made smaller than the concentration of the previous set of experiments (Curve 1 of Fig. 2). In this second set of experiments, the crystal containing F-aggregate centers (Curve 1 of Fig. 2) was subsequently irradiated for 45 min with M_L light at 78 °K instead of irradiating it with F-aggregate light. The results are shown in Curve 2 of Fig. 2. The new optical-absorption band at 1650 nm was formed at the expense of the F_2 band. Note that in this set of experiments, 50% of the F_2 centers were ionized. Note also that F_3 centers were ionized with this so-called M_L light. 12 From these results it is reasonable to assume that there

are R_L bands associated with F_3 centers and may correspond to the electronic transition from the ground state of the F_3 centers to its excited states in the conduction band as in the case of F_2 centers. ¹²

B. Destruction of F_2^+ Centers

At 78 °K there is no ionic mobility; thus if the 1650-nm band is truly due to an F_2^+ center, the retrapping of an electron at the F_2^+ center should result in the reformation of F_2 centers. By bleaching the F centers with F light at 78 $^{\circ}$ K, we should be able to recover the F_2 centers. Figure 3 shows that when the crystal is irradiated with F light at 78 $^{\circ}$ K, the 1650-nm band disappears, and at the same time the F_2 band arises. These results constitute conclusive proof that the new center which gives rise to the 1650-nm band must be an F_2^+ center. The fact that the F_3 bands arise also is not accomplished at the expense of the new 1650-nm band. 9 Note that the Curve 1 of Fig. 3 is the same optical-absorption spectrum as that shown by Curve 3 of Fig. 1.

Curve 3 of Fig. 2 shows the x-ray-induced destruction of the F_2^+ centers at the expense of the F_2 centers. At this irradiation temperature (78 °K) no new F centers are produced. ¹¹ No changes occurred in the F band (not shown here) as a result of the x irradiation at 78°K, nor did any change occur in the α band (see insert Curve 3 of Fig. 2). From Fig. 2 it appears that the x rays transfer the electron from some unknown electron trap back to the F_2^+ center. At this temperature (78 °K) the major effect of x radiation is the generation of recombination luminescence. It is possible that the luminescence plays a role in the electron transfer. This idea is substantiated by the experiments described above, where the F_2^* center is destroyed with F light rather than with x rays.

IV. DISCUSSION

A. Necessity for Electron Trap

The above data clearly demonstrate the identity, formation, and destruction of F_2^{\star} centers. The interconvertibility of F_2 and F_2^{\star} centers without loss logically requires the presence of an electron trap. The electron trap is a halogen (V) center core. When the halogen (V) center core traps an electron from an ionized F_2 center, it becomes an excess electron center and is called here a ψ center.

B. Mechanism of Formation and Destruction of F_2^+

From the foregoing data and considerations, one arrives at the mechanisms presented below. The rate of optically ionizing F_2 centers by M_L light irradiation at 78 °K seems to depend on (i) the

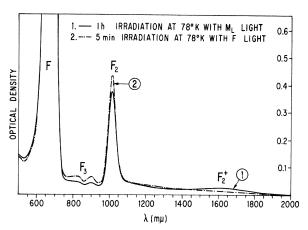


FIG. 3. Same optical-absorption spectrum as that shown in Curve 3 of Fig. 1 (Curve 1). Conversion of $F_2^{\star} \rightarrow F_2$ and $F_3^{\star} \rightarrow F_3$ at 78 °K by F light irradiation (Curve 2).

ability to optically eject an electron from the F_2 center, and (ii) the ability of halogen (V) centers to trap electrons. ^{13,14}

From the foregoing data and considerations, which are supported by observation, one arrives at the mechanisms presented below.

Case 1. The following are optical formation at 78 $^{\circ}$ K (using M_L light):

$$F_2 + M_L \text{ light} - F_2^+ + e, \tag{1}$$

$$V + e \to \psi, \tag{2}$$

$$F_2^+ + \psi$$
. (3)

For Eq. (3) note Figs. 1 and 2.

Case 2. The following are optical destruction at 78 $^{\circ}$ K (using F light):

$$F + (F \text{ light}) \rightarrow \alpha + e,$$
 (4)

$$F_2^+ + e - F_2,$$
 (5)

$$F_2 + \alpha$$
. (6)

For Eq. (6) note Curve 2 of Fig. 3.

Case 3. The following are x-ray destruction at 78 $^{\circ}\text{K}$:

$$\psi + x \text{ rays} - V + e, \tag{7}$$

$$F_2^+ + e \rightarrow F_2, \tag{8}$$

$$F_2 + V$$
. (9)

For Eq. (9) note Curve 3 of Fig. 2.

V. CONCLUDING REMARKS

In this work, evidence was presented which strongly leads to the conclusion that the 1650-nm optical-absorption band in KI arises from transitions of F_2^+ centers.

 F_2 centers become ionizable, and their opticalabsorption band is measurable when the electron ejected from an F_2 center becomes permanently trapped. The electron trap is a halogen (V) center core which forms an excess electron center called here the ψ center.

 F_3 centers were also ionized by the so-called M_L light. ¹² It is reasonable, therefore, to assume that there are R_L bands associated with F_3 centers just as there are M_L bands associated with F_2 centers. ¹²

 $^\dagger Preliminary$ results were presented at the Philadelphia, March 1969, American Physical Society Meeting.

PHYSICAL REVIEW B

VOLUME 2, NUMBER 2

15 JULY 1970

Mechanical Stability of Crystal Lattices with Two-Body Interactions

Frederick Milstein*

University of California, Santa Barbara, California 93106 (Received 17 March 1970)

The stability criteria developed by Max Born are applied to investigate the mechanical stability of body-centered-cubic (bcc) and face-centered-cubic (fcc) Morse-function crystal lattices $\{$ i.e., lattices in which the atoms interact via the morse interatomic potential energy function φ (r) = $D[e^{-2\alpha(r-r_0)}-2e^{-\alpha(r-r_0)}]\}$. It is shown that the conditions for stability can be expressed uniquely as a function of αa , where a is the lattice parameter of the crystal. The fcc lattice is stable for all values of αa , while the bcc lattice is stable only for values of αa which are less than 4.8. The possibility of using Morse-function lattices to represent cubic crystals with particular values of elastic moduli C_{11} and C_{12} is investigated. The Morse function can serve quite well for this type of representation for fcc crystals. For bcc crystals, however, the ratio C_{11}/C_{12} does not exceed about 1.36; thus the representation is inherently fairly poor.

INTRODUCTION

Max Born¹ investigated the conditions under which a crystal lattice will be thermodynamically stable. Necessary conditions for the thermodynamic stability of a crystal lattice are that the crystal be mechanically stable with respect to arbitrary (small) homogeneous deformations. Born¹ derived mathematical expressions for these stability requirements (referred to as the Born stability criteria) for cubic lattices of the Bravais type on the assumption of central forces of a very general type.

In the present paper, the stability of cubic crystal lattices, in which the atoms interact via the two-body Morse² interatomic potential function, is investigated in terms of the Born criteria. This study was prompted by the fact that empirical two-body interatomic potential functions such as the Morse or the inverse power functions are often used for representing interatomic interactions in investigations of a wide variety of phenomena. For example, these functions have been applied to studies³ of elastic moduli of metals^{4,5} and alloys, ⁶ lattice distortion at surfaces, ^{7,8} shock wave pro-

¹J. H. Schulman and W. D. Compton, *Color Centers in Solids* (MacMillan, New York, 1962).

²M. Hirai, M. Ikezawa, and M. Veta, J. Phys. Soc. Japan <u>17</u>, 1474 (1962).

³I. Schneider and H. Rabin, Phys. Rev. <u>140</u>, A1983 (1965).

⁴Y. Farge, G. Toulouse, and M. Lambert, Compt. Rend. <u>262B</u>, 1012 (1962).

 $^{^5}L.$ F. Stiles and D. B. Fitchen, Phys. Rev. Letters $\underline{17},\ 689\ (1966)$.

⁶J. Nahum and D. A. Wiegand, Phys. Rev. <u>154</u>, 817 (1967).

⁷J. Nahum, Phys. Rev. <u>158</u>, 814 (1967).

⁸J. Nahum, Phys. Rev. <u>174</u>, 1000 (1968).

⁹A. Kouvalis and H. N. Hersh, Phys. Rev. <u>188</u>, 1439 (1969).

¹⁰H. N. Hersh, Phys. Rev. <u>105</u>, 1158 (1957).

¹¹J. D. Konitzer and H. N. Hersh, Phys. Chem. Solids 27, 771 (1966).

¹²M. Hirai and K. Hashizume, in Proceedings of International Symposium on Color Centers in Alkali Halides, Rome, Italy, Abstract No. 84, 1968 (unpublished).

A. Kouvalis, Bull. Am. Phys. Soc. <u>13</u>, 73 (1968).
A. Kouvalis and H. N. Hersh, Bull. Am. Phys. Soc.

^{13, 419 (1968).}